

Phasenrausch-Messsoftware R&S FS-K4

Phasenrauschmessungen mit dem Spektrumanalysatoren R&S FSE/FSIQ/FSP/FSU/FSQ und den EMV-Testempfängern R&S ESIB/ESPI

- ◆ Editierbare Sweep-Einstellungen
- Schnelle FM/φM-Störhubmessungen
- Umfangreiche Markerfunktionen
- Speicherung von Messergebnissen und Einstellungen
- Detaillierte Bildschirmausdrucke

Mit der Phasenrausch-Messsoftware R&S FS-K4 werden die Spektrumanalysatoren und EMV-Testempfänger von Rohde & Schwarz zu einem Phasenrausch-Messplatz. Aufgrund des geringen Eigenphasenrauschens und der niedrigen Rauschzahl eignen sich R&S FSE, R&S FSU und R&S FSO hervorragend für diesen Zweck.

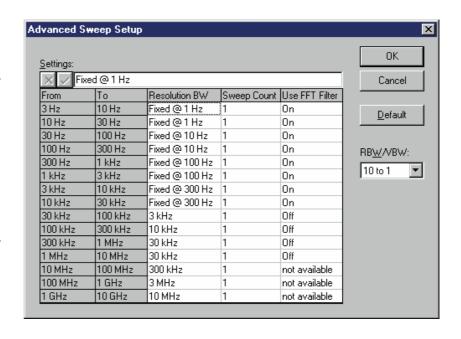
Die hohe Geschwindigkeit bei der Phasenrauschmessung ergibt sich aus schnellen Sweep-Abläufen. Durch die Verwendung von FFT- oder digitalen Filtern kann der Anwender entweder der höheren Geschwindigkeit oder der höheren Genauigkeit bei kleinen Auflösebandbreiten (≤1 kHz) den Vorzug geben. Die Software lässt verschiedene Einstellungen innerhalb eines Phasenrauschdiagramms zu, z.B. FFT nahe am Träger und analoge/digitale Filter weit weg vom Träger.

Die Software R&S FS-K4 läuft entweder auf dem R&S FSE mit der installierten Rechnerfunktion R&S FSE-B15 (Windows NT) oder auf einem externen PC (Windows, ab 9x) mit GPIB-Controller. R&S FSIQ/FSQ/FSU/FSP/ESIB und R&S ESPI besitzen die Controller-Funktion standardmäßig.

Markerfunktionen

Einfache Darstellung nummerischer Phasenrauschwerte für bestimmte Trägeroffsets mit den Markerfunktionen; für eine kontinuierliche Phasenrauschmessung auf einer bestimmten Frequenz erfolgt die Einstellung der Analysatoren auf die Markerfrequenz

Sweep-Einstellungen


Auflösebandbreite und Anzahl der Sweeps für jeden Frequenzbereich getrennt einstellbar

- Detaillierte Bildschirmausdrucke
 Bildschirmausdrucke mit editierbaren
 Kommentaren gewährleisten die
 schnelle und ausführliche Protokollierung von Messergebnissen
- Schnelle FM/φM-Störhubmessungen

Berechnung des FM/φM-Störhubs für den gewählten Offset-Bereich durch die Software R&S FS-K4 nach entsprechender Positionierung des Markers und Deltamarkers im Phasenrauschdiagramm; Anzeige des φM-Störhubs in Grad und Radiant

Grenzwert-Linie

Editierbare Grenzwert-Linie für einen schnellen Vergleich der Messergebnisse mit den vorgegebenen Grenzwerten

Technische Daten

_							
Fre	mil	on	7h	or	ΔI	n	h

Frequenzbereich	
R&S FSEA 30	20 Hz3,5 GHz
R&S FSEB 30	20 Hz7 GHz
R&S FSEM 30	20 Hz26,5 GHz
R&S FSEK 30	20 Hz40 GHz
R&S FSIQ3	20 Hz3,5 GHz
R&S FSIQ7	20 Hz7 GHz
R&S FSIQ26	20 Hz26,5 GHz
R&S ESIB7	20 Hz7 GHz
R&S ESIB26	20 Hz26,5 GHz
R&S ESIB40	20 Hz40 GHz
R&S FSP3	9 kHz3 GHz
R&S FSP7	9 kHz7 GHz
R&S FSP13	9 kHz13 GHz
R&S FSP30	9 kHz30 GHz
R&S FSP40	9 kHz40 GHz
R&S ESP13	9 kHz3 GHz
R&S ESP17	9 kHz7 GHz
R&S FSU3/R&S FSQ3	20 Hz3 GHz
R&S FSU8/R&S FSQ8	20 Hz8 GHz
R&S FSU26/R&S FSQ26	20 Hz26,5 GHz
Mittelung RBW:VBW bei Videomittelung Trace-Mittelung	1:10, 1:1, 10:1 vorhanden

Breite des Glättungsfensters Trägeroffset-Frequenzbereich

Die maximale Anzahl der in einem Phasenrauschdiagramm darstellbaren Dekaden wird durch den Frequenzbereich des Trägeroffset bestimmt.

1...199 Punkte

Untere Offset-Grenze				
alle R&S FSE, R&S FSIQ, R&S ESIB, R&S FSP R&S ESPI Modelle	10 Hz			
alle R&S FSU und R&S FSQ Modelle	1 Hz			
Obere Offset-Grenze				
Frequenzbereich des Analysators < 10 GHz	1 GHz			
Frequenzbereich des Analysators >10 GHz	10 GHz			

Nenn-Messgenauigkeit

(Effektivwert-Unsicherheit, 95-%-Konfidenzintervall)

Mindestphasenrauschpegel 95 dB unter Referenzpegel, FFT ausgeschaltet, Rückflussdämpfung der Quelle >14 dB (VSWR <1,5:1), Signal/Rauschabstand ≥10 dB

Mittenfrequenz	≤3,5 GHz	≤7 GHz	≤18 GHz	≤ 26,5 GHz	≤40 GHz
Offset ≤10 MHz	1,5 dB	1,6 dB		1,9 dB	
Offset >10 MHz	1,8 dB	2 dB	2,9 dB	3,4 dB	3,9 dB

Reproduzierbarkeit

(95-%-Konfidenzintervall) $\pm 0.8 dB$

RBW: VBW 10:1, Trace-Mittelung >15, Glättungsfenster ≥9

System-Phasenrauschen

-60

-70

-80

-90

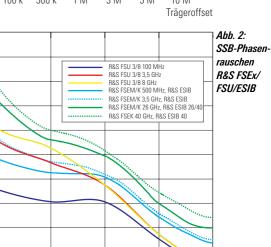
-100

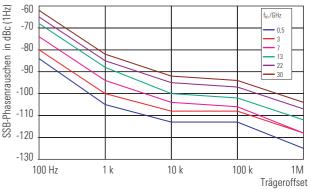
-120-130-140

-150

-160100 Hz

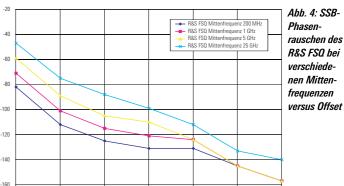

1 kHz


100 Hz


1 kHz

SSB-Phasenrauschen in dBc (1 Hz)

Eine systematische Messunsicherheit entsteht durch das Eigenphasenrauschen des Messinstruments. Die nachfolgenden Abbildungen zeigen typische Phasenrauschkurven der verschiedenen Analysatormodelle bei verschiedenen Frequenzen.


10 kHz

100 kHz

1 MHz 10 MHz

Trägeroffset

Abb. 3: SSB-Phasenrauschen versus Offset R&S FSP/ **ESPI**

10 MHz

100 kHz

Systemanforderungen

Steuerung über externen PC/IEEE-Bus

Windows 9x/ME/NT4.0/2000/XP (englische Version) Interface IEEE 488, IEEE-Karte AT/TNT/PCMCIA

Steuerung über R&S FSE

Controller R&S FSE-B15 für R&S FSE

Steuerung über R&S FSIQ/ESIB

Steuerung über R&S FSP/FSU/FSQ//ESPI

externe Tastatur und Maus (z.B. R&S PSP-Z2 und R&S FSE-Z2)

Bestellangaben

Phasenrausch-Messsoftware R&S FS-K4 1108.0088.02

Empfohlene Optionen für R&S FSE

Controller zum R&S FSE
(Windows NT, englisch)
Erhöhte Pegelmessgenauigkeit
bis 2 GHz
R&S FSE-B15
1073.5696.06
1073.5696.06
1073.5696.06
1073.5696.06

Ergänzende Datenblätter

Spektrum Analysatoren R&S FSEx	PD 0757.1519
Spektrum Analysator R&S FSP	PD 0757.5137
Spektrum Analysator R&S FSU	PD 0757.6504
Signal Analysator R&S FSIQ	PD 0757.4160
EMV-Testempfänger R&S ESIB	PD 0757.4576
Testempfänger R&S ESPI	PD 0757.6540
Signalanalysator R&S FSQ	PD 0757.7652